Acta Cryst. (1998). C54, 322-324

trans-Diperchloratobis(pyridine-2-carbox-amide- $\left.N^{1}, \boldsymbol{O}\right)$ copper(II)

Lestaw Sieroń and Maria Bukowska-Strzyżewska
Institute of General \& Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Lódź, Poland. E-mail: mbukowska@lodz1.p.lodz.pl
(Received 12 June 1997; accepted 29 October 1997)

Abstract

Crystals of the title compound, $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}\right)_{2}$], consist of centrosymmetric complex molecules of $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{paa})_{2}\right]$ linked by hydrogen bonding (paa is picolinic acid amide or pyridine-2-carboxamide, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$). The paa ligands are coordinated through their ring N and amide O atoms to form the base of an elongated octahedron $[\mathrm{Cu}-\mathrm{N} 1.967$ (2) and $\mathrm{Cu}-\mathrm{O}$ 1.937 (2) \AA]. The axial $\mathrm{Cu}-\mathrm{O}$ distance is 2.649 (3) \AA. The sparse structural literature on copper(II)-pyridine-2-carboxamide chelate complexes is discussed.

Comment

This work forms the continuation of our study of the preparation, properties and structure of copper(II) complexes with pyridine-2-carboxamide (Sieroń \& Bukowska-Strzyżewska, 1997). The structure of the title compound, (1), is shown in Fig. 1. The complex displays inversion symmetry. The Cu atom is in an elongated octahedral environment with four short and two long bonds. The short bonds [$\mathrm{Cu}-\mathrm{N} 1.967$ (2) and $\mathrm{Cu}-$ O 1.937 (2) \AA] are formed by the chelating paa ligand which bonds through its amide O and ring N atoms. Selected geometric parameters are given in Table 1.

(1)

Table 3 summarizes selected bond lengths in $\mathrm{Cu}^{\mathrm{II}}-$ paa complexes. The Cu atom always adopts an elongated octahedral coordination. Pyridine-2-carboxamide in complexes (1)-(4) forms a chelate ring containing $\mathrm{Cu}-\mathrm{N}$ (pyridine) and $\mathrm{Cu}-\mathrm{O}$ bonds. Complex (5) is the sole example where paa forms a five-membered chelate ring involving short $\mathrm{Cu}-\mathrm{N}$ (pyridine) and long $\mathrm{Cu}-\mathrm{O}$ (carboxamide) bonds. In complexes (1)-(4), the
lengths of the equatorial $\mathrm{Cu}-\mathrm{N}$ chelate bonds are very similar: the average value of 1.967 (2) \AA is identical to that found in the title compound. The $\mathrm{Cu}-\mathrm{O}$ chelate bonds show more variation [from 1.937 (2) \AA in (1) to 1.981 (1) \AA in structures (2) and (3)]. We observe that elongation of this bond is connected with the shortening of the axial $\mathrm{Cu}-\mathrm{O}$ bonds, as shown in Fig. 2.
The complexes lie in the plane (010) and are connected along [101] and [101] by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}\left(\mathrm{ClO}_{4}^{-}\right)$ hydrogen bonds, forming a two-dimensional network. A

Fig. 1. Centrosymmetric trans-diperchloratobis(pyridine-2-carboxamide)copper(II). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The correlation between equatorial $\mathrm{Cu}-\mathrm{O}$ bond lengths and the average axial $\mathrm{Cu}-\mathrm{O}$ distances in complexes where the paa chelate ring is equatorial [(1)-(4) relate to compounds in Table 3].
centrosymmetric 12 -membered ring is formed by four such hydrogen bonds (see Table 2). We can observe the influence of hydrogen bonds and the weak Cu $\mathrm{O} 3\left(\mathrm{ClO}_{4}^{-}\right)$coordination on the $\mathrm{Cl}-\mathrm{O}$ bond lengths and the displacement parameters of the O atoms of the ClO_{4}^{-}groups. The observed $\mathrm{Cl}-\mathrm{O}$ bonds range from 1.395 (3) to 1.433 (2) \AA and the $U_{\text {eq }}$ values for perchlorate O atoms vary from 0.119 (1) to 0.078 (1) \AA^{2}. The longest $\mathrm{Cl}-\mathrm{O}$ bond and smallest $U_{\text {eq }}$ value are for the O 4 atom which participates in the stronger of the two hydrogen bonds. The long $\mathrm{Cu}-\mathrm{O} 3$ bond of 2.649 (3) \AA causes a similar elongation of $\mathrm{Cl}-\mathrm{O} 3$ [1.414 (2) \AA], as does the weak hydrogen bond $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ of 2.23 (3) \AA, which elongates $\mathrm{Cl}-\mathrm{O} 5$ to 1.411 (2) \AA.

Experimental

The title crystals were grown from an aqueous solution of 2-pyridinecarbonitrile and copper(II) perchlorate, indicating that copper-assisted hydrolysis of 2 -pyridinecarbonitrile to pyridine-2-carboxamide (Watanabe et al., 1973) had occurred. A pale-blue solution formed when $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(1 \mathrm{mmol})$ was added to an aqueous solution (50 ml) containing 2-pyridinecarbonitrile (2 mmol). After heating to boiling point, the solution became dark blue. After a few days, pale-blue prismatic crystals of the title compound were obtained.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 41
reflections
$\theta=3.7-15.8^{\circ}$
$\mu=1.549 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$

Triclinic
$P \overline{1}$

$$
\begin{aligned}
& a=5.8839 \text { (11) } \AA \\
& b=9.104(2) \AA \\
& c=9.205(2) \AA \\
& \alpha=92.60(2)^{\circ} \\
& \beta=101.697(15)^{\circ} \\
& \gamma=107.608(14)^{\circ} \\
& V=457.26(15) \AA^{3} \\
& Z=1 \\
& D_{x}=1.840 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Data collection
Siemens $P 3$ diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
1984 measured reflections
1799 independent reflections
1629 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.012$
$\theta_{\text {max }}=25.98^{\circ}$
$h=0 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=-11 \rightarrow 11$
3 standard reflections every 96 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.07$
1799 reflections
158 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{F}^{2}\right)+(0.0428 P)^{2}\right.$ +0.56 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.01$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.016 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 2$	$1.937(2)$	$\mathrm{Cl}-\mathrm{O} 6$	$1.395(3)$
$\mathrm{Cu}-\mathrm{O} 3$	$2.649(3)$	$\mathrm{O} 2-\mathrm{Cl}$	$1.255(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.967(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.343(3)$
$\mathrm{Cl}-\mathrm{O} 3$	$1.44(2)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.327(3)$
$\mathrm{Cl}-\mathrm{O} 4$	$1.433(2)$	$\mathrm{N} 2-\mathrm{Cl}$	$1.302(3)$
$\mathrm{Cl}-\mathrm{O} 5$	$1.411(2)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.494(3)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 3$	$90.30(7)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$119.9(2)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$83.27(8)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$112.2(2)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$80.89(8)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.5(2)$
$\mathrm{Cl}-\mathrm{O} 2-\mathrm{Cu}$	$113.7(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.1(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu}$	$112.6(2)$	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	$121.0(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cu}$	$127.5(2)$	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$126.2(2)$

Table 2. Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \ldots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{O} 4^{\prime}$	$0.85(3)$	$2.08(3)$	$2.919(4)$	$171(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots 5^{11}$	$0.80(3)$	$2.23(3)$	$2.977(3)$	$155(3)$
Symmetry codes: (i) $1-x,-y,-z ;$ (ii) $x, y, z-1$.				

Table 3. Selected bond lengths (\AA) in copper(II) pyridine-2-carboxamide (paa) complexes

No.	Compound	Equatorial bonds		Axial bonds	
		$\mathrm{Cu}-\mathrm{N}($ раa)	$\mathrm{Cu}-\mathrm{O}$ (paa)	L	$\mathrm{Cu}-\mathrm{O}(\mathrm{L})$
(1) ${ }^{\text {a }}$	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{paa})_{2}$	1.967 (2)	1.937 (2)	ClO_{4}^{-}	2.649 (3)
(2) ${ }^{\text {b }}$	$\mathrm{CuCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{paa})_{2}$	1.960 (1)	1.981 (1)	$\mathrm{H}_{2} \mathrm{O}$	2.418 (2)
(3) ${ }^{b}$	$\mathrm{CuBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { paa) })_{2}$	1.965 (2)	1.981 (1)	$\mathrm{H}_{2} \mathrm{O}$	2.417 (3)
(4) ${ }^{\text {c }}$	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{paa})_{2}$	1.976 (3)	1.955 (2)	$\mathrm{H}_{2} \mathrm{O}$	2.265 (4)
				NO_{3}^{-}	2.832 (4)
	Average value	1.967 (2)			
		$\mathrm{Cu}-\mathrm{N}(\mathrm{paa})$	$\mathrm{Cu}-\mathrm{N}(\mathrm{pyCO})_{2}$		
(5) ${ }^{\text {d }}$	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)\left[\left(\mathrm{pyCO}_{2}{ }_{2} \mathrm{NJ}\left(\mathrm{H}_{2} \mathrm{O}\right)(\right.\right.$ paa $)$	2.001 (4)	$\begin{aligned} & \text { from } 1.931 \text { (4) } \\ & \text { to } 2.018(4) \end{aligned}$	раа ClO_{4}^{-}	$\begin{aligned} & 2.316(3) \\ & 2.73(6) \end{aligned}$

References: (a) this work; (b) Sieroń \& Bukowska-Strzyżewska (1997); (c) Castro et al. (1990); (d) Cantarero et al. (1988) (pyCO = $\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CO}$).

All non-H atoms were refined anisotropically. All H atoms were located from a difference synthesis and refined isotropically. Corrections for absorption were considered unnecessary; transmission factors were estimated to be in the range 0.577 0.649 .

Data collection: Siemens P3 software. Cell refinement: Siemens P3 software. Data reduction: SHELXTLIPC XDISK (Sheldrick, 1990b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC XP. Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1350). Services for accessing these data are described at the back of the journal.

References

Cantarero, A., Amigó, J. M., Faus, J., Julve, M. \& Debaerdemaeker, T. (1988). J. Chem. Soc. Dalton Trans. pp. 2033-2039.

Castro, I., Faus, J., Julve, M., Amigó, J. M., Sletten, J. \& Debaerdemaeker, T. (1990). J. Chem. Soc. Dalton Trans. pp. 891-897.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1997). Acta Cŗ̄st. C53, 296-298.
Watanabe, K., Komiya, S. \& Suzuki, S. (1973). Bull. Chem. Soc. Jpn, 46, 2792-2794.

Acta Cryst. (1998). C54, 324-327

Monosodium 3-(Dimethylammonio)-1-hydroxy-1,1-propanediyldiphosphonate Monohydrate (Monosodium Olpadronate Monohydrate)

Daniel Vega, ${ }^{a}$ Ricardo Baggio ${ }^{a}$ and Oscar Piro ${ }^{b}$
${ }^{a}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ${ }^{b}$ LANADI, Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina. E-mail: vega@cnea.edu.ar

(Received 6 May 1997: accepted 14 October 1997)

Abstract

The crystal structure of the title compound, $\mathrm{Na}^{+} . \mathrm{C}_{5} \mathrm{H}_{14}{ }^{-}$ $\mathrm{NO}_{7} \mathrm{P}_{2}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, contains zwitterionic olpadronate anions coordinated to Na^{+}cations. The interactions in the crystal define broad chains which have Na^{+}ions at their core and bis-phosphonate groups near the Na^{+}centres, with the positively charged ends of the zwitterions

extending outwards. Strong hydrogen bonds provide both intra- and interchain connectivity.

Comment

The title compound, (I), has been shown to be a highly effective drug for preventing or reverting bone loss (Van Beek et al., 1994) and is much more soluble than other bis-phosphonates in common use, suggesting better digestive tolerance. Its dimethylated side chain offers unique properties for modulating bone-mass metabolism (Boonekamp et al., 1986, 1987; Löwik et al., 1988; Van Der Pluijm et al., 1991; Feretti et al., 1995; Vega et al., 1994) without disturbing cell vitality and bone quality, according to experimental assays.

(I)

A number of structural studies of drugs containing bis-phosphonate groups have been known for some time, in particular, that of olpadronate free acid (Shkol'nikova et al., 1987). This knowledge has not diminished our interest in the structures of sodium salts of bis-phosphonates and, in particular, that of olpadronate, mainly because among the recent related literature (Coiro \& Lamba, 1989; Leroux et al., 1989; Shkol'nikova et al., 1990; Rachdaoui et al., 1990; Vega et al., 1996) only a few sodium salts are to be found, in spite of their favourable bio-availability. We report here the crystal and molecular structure of monosodium olpadronate monohydrate, (I). Unfortunately, the precision of the results previously reported for the free acid (Shkol'nikova et al., 1987) precluded any detailed analysis, making meaningful comparisons possible only in qualitative terms.
A view of the molecule and its surroundings in the lattice is shown in Fig. 1. The molecule exists as a zwitterion with an overall charge of -1 ; the protonated dimethylamine group bears a positive charge and the two phosphonate groups each have a single negative charge. Each phosphonate has one protonated 0 atom, the extra electronic charge being shared by the remaining two non-protonated O atoms. This fact defines two distinct types of $\mathrm{P}-\mathrm{O}$ bonds, as shown by the mean values of the following bond lengths and angles: $\mathrm{P}-\mathrm{OH} 1.579$ (7), $\mathrm{P}-\mathrm{O} 1.496$ (8) $\AA, \mathrm{O}-\mathrm{P}-\mathrm{OH}$ $109.0(24), \mathrm{O}-\mathrm{P}-\mathrm{O} 116.9(19)^{\circ}$; these are in accord with the results found for related molecules (Coiro \& Lamba, 1989; Vega et al., 1996) and confirms the partial double-bond character of the non-protonated O atoms.

As in the free acid, the phosphonate groups have staggered conformations with atoms O11, P1, C1, P2 and O 21 nearly coplanar [$\mathrm{Ol} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2-168.9$ (2)

